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ABSTRACT 

In an attempt to develop CMOS circuitry (both analog and digital) for the implementation 
of artificial neural networks, the back-propagation learning algorithm was examined in 
detail. Simulations were performed to determine the robustness of this algorithm to 
anticipated implementation artifacts such as quantization and weight-range limitation. 
Circuitry which computes with analog signals and digitally encoded weights was then 
designed to implement the algorithm within the tolerances determined by the simulations. 

The architecture of an alternative, fully digital design was also defined and its performance 
compared with that of both the analog/ digital design and a fully analog design based on 
circuitry that has been proposed in the literature. 
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IMPLEMENTING ARTIFICIAL NEURAL NETWORKS 
IN INTEGRATED CIRCUITRY: 

A DESIGN PROPOSAL FOR BACK-PROPAGATION 

1.   INTRODUCTION 

Recently, a great deal of work has been done in an attempt to define computational archi- 
tectures that capture some of the properties of biological neural systems. This work is motivated 
by the hope that these artificial systems will also demonstrate some of the properties of the bio- 
logical systems including learning, massive parallelism, and fault tolerance. Although many of the 
results look promising, most of this work has been done by implementing software routines on 
conventional digital computers that model these highly distributed architectures. As a result, the 
simulations are often extremely slow and researchers are often limited in the size of the networks 
that can be practically simulated. Although most researchers recognize that implementation in 
custom hardware is an eventual goal, the progress toward this goal has been relatively slow. 

One of the artificial neural learning algorithms that has been studied most intensively is the 
back-propagation algorithm. This algorithm has been applied to problems in character recogni- 
tion [Burr, 86], speech recognition [Burr, 86] [Huang, 87] [Lippmann, 87] [Peeling, 86], text-to- 
speech processing [Sejnowski, 87], signal prediction [Lapedes, 87], protein structure analysis 
[Qian, 88] [Levin, 88], and a variety of other difficult problems. All these applications, however, 
have in common the fact that they have been implemented on conventional computers running 
software simulators. 

This project attempts to define an architecture and circuitry which can implement the back- 
propagation algorithm in hardware that is specifically designed to take advantage of the distrib- 
uted nature of artificial neural-network algorithms. First, the pertinent issues involved in back- 
propagation are discussed, and a general architecture described that can be used to implement 
the algorithm. Section 2 attempts to abstract the essential features of the problems to which 
back-propagation is typically applied, and Section 3 presents the specifics of how the back- 
propagation algorithm solves these problems. A specific architecture is defined in Section 4, and 
the results of simulations that were performed to model this architecture are presented in Sec- 
tion 5. Circuits with analog signaling and digital control that can be used to implement this 
architecture are described in Section 6. Finally, in Sections 7 and 8, alternative methods of 
implementing different portions of the architecture are presented and compared in terms of per- 
formance, cost, and feasibility. 

The goals of this report are to present the issues that are critical to the design of hardware 
that implements the back-propagation algorithm, and to define a particular design which satisfies 
these constraints. Additionally, a variety of implementation techniques that have been applied to 
other artificial neural networks in the literature are discussed with respect to their relevance to 
the implementation of the back-propagation algorithm. 





2.    WHAT IS BACK-PROPAGATION USED FOR? 

"Artificial neural network" is a generic term that is used rather loosely to describe systems 
that are characterized by a large number of relatively simple processors (neurons) that are inter- 
connected to form a complex system. Unlike digital systems in which the processors are pro- 
grammed to allow the system to perform a given task, in these systems it is the modification of 
the interconnection of the processors which is used to program the system. The pattern of inter- 
connection thus stores the information. In the sense that biological neural systems are also 
thought to store information in a distributed fashion and not locally, artificial neural networks 
are "biologically inspired." This, however, is arguably where the biological inspiration ends for 
systems like the back-propagation networks that will be described in this report. The significance 
of such systems is thus not necessarily the biological inspiration so much as the fact that they 
represent an approach to computation that is radically different from that of more conventional 
digital systems. 

There are a host of different designs that fall under the heading of artificial neural net- 
works, but these designs can generally be characterized by the types of processors used, the way 
in which these processors are interconnected, and the method used to program or "learn" the 
interconnections pattern for a given task. In this context, the term back-propagation describes a 
particular learning algorithm (also known as the generalized delta rule) but it also implies a spe- 
cific type of network architecture and a processor of a given characteristic. The specific learning 
algorithm was proposed by [Rumelhart, 86], but the general architecture and processor type is an 
adaptation of the perceptron architecture that was proposed by [Rosenblatt, 62] and was itself 
inspired by the work of McCulloch and Pitts in the 1940*s. 

The detailed specifications of the architecture and processors will be discussed in Section 4, 
but it is important to understand what these systems are expected to do before discussing how 
they are expected to do it. For now, the network will be thought of as a black-box with n inputs 
and m outputs as in Figure 2-1 (temporarily glossing over the fact that the box may actually be 
full of a large number of highly interconnected processors). The inputs and outputs of the net- 
work will be thought of as n- and m-dimensional vectors, respectively, with each component of 
each vector being a signal that can take on any value in a specified range of values. In this 
report, that range will generally be 0 to 1 unless otherwise noted. (This is a rather arbitrary 
choice, and consistency in using this range is more important than the actual range itself.) 

The back-propagation algorithm has been applied to a wide variety of diverse problems 
including character recognition [Burr, 86], speech recognition [Burr, 86] [Huang, 87] [Lipp- 
mann, 87] [Peeling, 86], text-to-speech processing [Sejnowski, 87], signal prediction [Lapedes, 87] 
and a variety of other difficult problems. In the context of this research, however, it is most 
important to abstract the fundamental properties of these problems and attempt to define the 
essential characteristics of a back-propagation problem in an abstract context. I hope that this 
will lead to a design which is useful for a wide variety of problems, instead of being useful for 
only one particular application. 
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Figure 2-1.    Black-box view of back-propagation network. 

Pattern association is one problem to which back-propagation networks are commonly ap- 
plied [Sejnowski, 87] [Lapedes, 87]. In such a problem there is a set of input and output vector 
pairs. The network is "programmed" with a particular weight pattern so that, when one of the 
input vectors is applied, the network produces the corresponding output vector. The power of 
such a network as a pattern associator is basically twofold. First of all, unlike conventional dig- 
ital systems that are programmed by a person, a back-propagation network "learns*' the correct 
weight pattern from experience. As will be discussed in much greater detail in Section 3, the 
weight pattern that programs the network is found by a training process that involves sequen- 
tially applying the input vectors while at the same time supplying the network with the desired 
output. At each pass through the training database, the network uses this information to modify 
its weights until it learns the appropriate weight pattern. The second significant ability of a back- 
propagation network when used as a pattern associator is its ability to generalize. That is, if a 
noisy version of one of the input vectors is applied to the network, the network should still pro- 
duce an output that is similar to the one corresponding to the noise-free input vector. If an input 
vector is halfway between two training vectors, then the output should be a combination of the 
outputs that correspond to those two training vectors. 

Pattern association can be thought of abstractly by thinking of the network as being used to 
define a smooth m-dimensional function in n-dimensional input space. The network is trained by 
simply giving it information about the function at a certain limited number of points in n-space, 
and the network is then used to interpolate values of the function at previously unencountered 
points. 

Another common application of back-propagation networks is pattern classification 
[Burr, 86], [Huang, 87], [Rumelhart, 86]. Although this application has many things in common 
with the pattern association application discussed above, there are significant differences between 



the two. In the context of pattern classification, the input vector should be thought of as a point 
in n-space. The objective is to define n-dimensional regions in n-space and have the network 
determine which region the input "point" is in. The output of such a network would be a code 
that indicates which region the input vector is in. Thus, the network is associating input vectors 
with output codes instead of the more complicated output vectors in the pattern association 
application. The important difference between a pattern classifier and a pattern associator is the 
performance on input vectors that are halfway between two of the training vectors. Whereas the 
response of the pattern associator would be interpreted as an interpolation between the two 
trained outputs, the response of the pattern classifier would be to choose the best matched 
output code. 

This report will concentrate on back-propagation networks used as pattern classifiers. 
Although it is important that any hardware implementation be capable of performing the actual 
back-propagation algorithm for a variety of applications, pattern classification was chosen to 
evaluate design trade-offs in this study and was simulated extensively in order to predict the per- 
formance of the design. In these networks, there will be one output signal dedicated to each 
"class" of inputs. When an input vector is applied to the network, all of the output signals will 
be observed and the class corresponding to the largest network output will be considered the 
network's "classification" of that input. Although each component of the output vector will be 
able to take on any value in the 0 to 1 range, the component associated with the correct class 
will be trained to be 1, and all of the others will be trained to be 0. 

Pattern classification problems can have varying levels of complexity and difficulty as mea- 
sured by several parameters including connectedness, convexity, linear separability, and granular- 
ity. All these metrics describe characteristics that are best understood when the pattern classifica- 
tion problem is seen as defining regions in n-dimensional space and classifying input vectors 
according to the region in which they are located. A class region is connected if it is possible to 
move from any one point in the region to any other point in the region without ever leaving the 
region. Regions that are not connected will be referred to as disjoint. Convexity is determined for 
any region if no pair of points exists such that both points are in the region but a line segment 
connecting the two points includes points that are not in that region. In the simple 2-dimensional 
example shown in Figure 2-2, region A is convex and connected, region C is not connected, and 
region B is connected but not convex. 

Unlike convexity and connectedness, the other parameters are more characteristic of a group 
of regions than any one particular region. Linear separability means that it is possible to separate 
the regions with a straight line in the 2-dimensional case, and with a single hyperplane in higher 
dimensional situations. Granularity is a qualitative metric which describes the fineness of detail 
required to describe the regions as compared with the 0 to 1 scale. While regions A and B in 
Figure 2-2 are not linearly separable, regions A and C are. The regions in Figure 2-2 exhibit low 
granularity, while those in Figure 2-3 have high granularity. 
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Figure 2-2.    Classification regions in 2-dimensional input space. 

Finally, there is a very significant distinction to be made between problems in which class 
regions abut, as in Figure 2-2, and those in which there is unclassified space between adjacent 
class regions as in Figure 2-3. The difference between these two types of problems is that in the 
latter there are points in the domain space of the problem for which no class is defined; no one 
cares how these points get classified. It should be intuitive that when class regions abut, there is 
no room for error in defining the dividing line between the regions. When there is space between 
the regions, however, the division can be made with less precision and still satisfy the constraints 
of the problem. It will be shown in the simulation results that for back-propagation it does 
require less precision to define the class regions for a problem with space between the class 
regions. 



Figure 2-3.    High granularity classification regions. 





3. THEORY OF BACK-PROPAGATION ALGORITHM 

Section A below is a review of the work presented in [Rumelhart, 86]. It is presented here 
because a detailed understanding of the back-propagation algorithm is essential for understanding 
critical implementation issues that will be emphasized in the following discussion. Section B de- 
scribes a conceptual framework that provides some insight into how a back-propagation network 
functions. This insight will be valuable when discussing the results of the simulations that appear 
in Section 4. 

A.    THE GENERALIZED DELTA RULE 

As discussed earlier, the term "back-propagation," although descriptive of the learning algo- 
rithm used in these networks, also implies a specific network architecture and a particular proces- 
sor with certain characteristics. As shown in Figure 3-1, the underlying network architecture is 
composed of ordered layers of processors which are also referred to as "nodes" in the network. 
Nodes in one particular layer fl (£ = 1, 2, 3, . . . , L) receive input signals from nodes in the pre- 
vious layer (fi - 1), and pass their outputs on to the nodes in the next layer (£ + 1). As a nota- 
tional convention, the output signal from node j in layer 1 is referred to as OJ^ (following this 
convention, the ith network input will be Op). The connections between processors in different 
layers are characterized by strengths or weights. 

NETWORK INPUTS 

0 0 
LAYER-1 NODES 

LAYER-2 NODES 

Figure 3-1.    2-layer network architecture. 



The notation for the weight connecting node i in layer fi - 1 to node j in layer 1 is WJj. The 
action of a processor is to accept as input the weighted sum of the output signals from the pre- 
vious layer, and produce an output by passing this weighted sum through an activation or 
transfer function such as the one shown in Figure 3-2. It should be noted in this figure that, 
because the strength of a connection can be positive, negative, or zero, the weighted sum which is 
the input to any node can be positive, negative, or zero. 

1.00 

8.00 x 10 

6.00 x 10 

z 

4.00 x 10 

2.00 x 10 

2.71 x10 

F(NE T  j 

■ (NET ■ ) 

Figure 3-2.    Logistic activation function. 

Note that the superscript, which usually refers to exponentiation, will be used here to indi- 
cate association with a particular layer; exponentiation will be indicated by a circumflex: 

x squared - \2 

The output of the jth node in the 2nd layer = O? 

A one-layer network would have one layer of nodes each with its own distinct weighted con- 
nection to each of the network's input signals. A two-layer network would have a second layer of 
nodes that calculate their inputs as the weighted sum of the outputs of the first layer. Networks 
of more than two layers are constructed by adding additional layers in this same fashion. In a 
multi-layer network, all layers except for the output layer are called hidden layers, and nodes in 
these layers are called hidden nodes. 

Back-propagation defines an algorithm for modifying weights in order to solve a particular 
problem. The algorithm starts with a network with random weights. An input vector is applied to 
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the network while the outputs of the network are observed. The magnitude of the difference 
between the actual output vector of the network and the desired output vector for that particular 
input is used to generate an error function that is a measure of how well the network has been 
trained. Back-propagation then specifies how to calculate the weight changes required to do a 
gradient descent of this error function. 

To be more precise, back-propagation defines an error function which measures the closeness 
of the actual outputs of the network (0-L) and the target outputs (T:) for all of the patterns in 
the training data set: 

E= 22   T(V°K2 

P    J 

(3-1) 

where p is used to index the patterns in the training set. For the sake of clarity, the subscript **pM 

will only be made explicit when there is some ambiguity. In general, it should be assumed that 
all variables represent signals that are specific to the particular input pattern. 

The idea is to choose weight changes which will reduce this error. This effect is maximized 
by selecting weight changes in the direction opposite to the gradient of this error function, thus 
performing a gradient descent of the error function. That is: 

~AK* —7   • (3-2> 
The first simplification is to notice that the derivative of a sum is the sum of the derivatives 

and, hence, the effects of each pattern in the training set can be observed independently: 

dE       _  aE
P 

 = S        • (3-3) 
awR    fawR 

To calculate these partial gradients, then, the error function must be represented as a func- 
tion of the Wjj's. To do this, first define the input to the jth node in layer fi, which is a weighted 
sum of the outputs of the previous layer, to be NETj: 

NET? = £ Oj2-1 * WJt        . (3-4) 
i 

Furthermore, the activation function which relates the output of a node to its input will be 
referred to as f(). In order to calculate the gradient, this must be a differentiable function 
[df()/dNET = f'()]. With this notation, the gradient can be calculated by repeatedly applying the 
chain rule. First, for weights in the output layer (layer L): 

dEp ÖED dNETf- 
* L        . (3-5) 

dwjr    aNETf-      aw]; 
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From Equation (3-4), the second term can be calculated as dNETjL/dWJj- = OjL_1. For notational 
convenience, define 6-L = dEp dNETJ- [the first term in Equation (3-5)], so that: 

aEP 
  = «f-Of-1 (3-6) 
dWJr 

Additional application of the chain rule shows that 6-L is: 

dEn öEn        aO,L 

6|= L_=^L,_^       . (3.7) 
dNETJ-      aOJ-     dNETJ- 

Using the fact that 0-L = f(NETJ-) and the definition of the error function in Equation (3-1), this 
equation simplifies to: 

fij- = 2 * y (0[ - Tj) * f(NETJ-)       . (3-8) 

Finally, substituting this result back into the equation for calculating ApWfj- (3-2) yields: 

dEp 

- = of- * O.H = (0,L - T-) * f(NETL) * Of-"1        . (3-9) 
3 Wir J J 

This computes the gradient of the error function with respect to weights in the output layer. 
Calculating the gradient for weights in the previous layers, however, is a bit more complicated. 
Again, the chain rule shows that: 

öEn             dEn          öNETf-"1 

 P— --  p— *  }— (3-10) 
awH      dNETJ--1      awjr-» 

Just as in the case of weights in the output layer, the second term is: 

aNET1--1 

 rr =C)i"2      • <3-n> 

Consistent with the earlier definition of sh = 5E /dNETk the first term in Equation (3-10) is 
8j-'1 - aEp/aNETJ--1. Thus, Equation (3-10) can be written as: 

aEp 

 — = 6\'1 * Op2 (3-12) 
awH     J 

Note the similarity between this equation and Equation (3-6). The difference is that here, 
because the outputs of the nodes in this layer do not appear explicitly in the error function, cal- 
culating 6J-"1 requires further application of the chain rule. Doing this yields: 

aEn aE„        aoH aNETk
L        aEp 

- = V  *  — * f(NETH)       .    (3-13) 
CTL-1      T*    ar*L-l awcH J 

61-■ = = * = y *  
aNETp1     aoH     aNETp1     v   aop1       aNETir k 

12 



Again, it follows from Equation (3-4) that: 

dNETj: 

a0j 

= WL       . (3-14) 

Finally, because dE /dNETj- = 6J^, Equation (3-13) thus simplifies to: 

6L-1 = £  WL . öL , f(NETH) (3.15) 

k 

This is a recursive algorithm in that it defines a way to calculate 62 = dEp/dNET (referred to as 
the 6 signal) at any node; simply take a weighted sum of the 8 signals of all nodes in the next 
layer and multiply by the derivative of the activation function. Once the of is calculated accord- 
ing to this algorithm for all of the nodes in the network, the A wR  is found to be simply: 

öEp 
-ApWRc  = 6f * Of'1 (3-16) 

aw.f 

where the negative sign is to emphasize that it is the descent and not ascent of the error function 
that is to be performed. The derivation is summarized in Table 3-1. 

The keys to this result are its simplicity and its generality. No matter how many layers are in 
the network or how many nodes are in each layer, this gives a simple algorithm for adjusting 
every single weight so that the error at the output of the network is reduced. The steps in per- 
forming the algorithm would then be as follows: 

(1) Apply the first training vector to the inputs of the network. 

(2) Calculate the 6's associated with the nodes in the output layer according to 
Equation (3-8): 

^(C^-TpifXNElJ-)       . (3-17) 
(3) Use these delta values to calculate the delta values of nodes in the previous 

layer according to Equation (3-15): 

6L-1 = 2 WL , f(NETH)       . (3-18) 

(4) Continue calculating the 6's for previous layers of the network in this way 
until 6 signals have been calculated for all of the nodes in the network. 

(5) Calculate the weight change for this particular input vector according to: 

-ApWRoc  i_=ö2*oH        . (3-19) 
p J      awR      J 

(6) Repeat this procedure for each pattern vector in the training set. 
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TABLE 3-1 

Summary of Back-Propagation Derivation 

dEr 

*Wji 

Ö 

[(? 

5Ep 

3NETi. 

[ dEp   .    *>j I 
[ (JOj               5NET/. 

dEp . 
*NET«+1v                  8" 

ao]    )' r(NETJ?)] 5NET» + l 

k 
**♦')• f'(NETj) 

<?NET . n 

*wjS 

o, 

0 

.-I 

-l 

„...] 

Thus: 

where 

<9E 
!-.«?• OH 

<9W 2     
WJ 

Ji 

«,'■[(?<*'•<')]• <•<""') * ^t (9NET 
J 

(7)    Update all of the weights in the network by an amount equal to: 

P     dWji P 

(3-20) 

To accelerate performance, the algorithm is often modified so that the weights are adjusted 
after each training vector application. Because each vector application only yields partial informa- 
tion regarding the gradient of the error function, this method of weight adjustment is inherently 
inaccurate. To compensate for the limited amount of information available from the application 
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of just one vector, the weight update will take into account the weight adjustment done during 
the application of the previous vector. In this case, steps (6) and (7) would be replaced by: 

(6) Update all of the weights in the network according to: 

AW£(p) = ApWJUa*AW£(p-l)        . 

(7) Repeat this procedure for each pattern vector in the training set. 

(3-21) 

The idea is to change each weight in the direction specified by the present state of the net- 
work, but influenced by the direction that the weight was changed when the last vector was being 
applied. The influence of the previous weight change is determined by the constant a. 

B.    VECTOR SPACE INTERPRETATION 

In order to develop an intuitive understanding of how a back-propagation network repre- 
sents a problem, consider the pattern classification application discussed in Section A. A good 
example would be a one-layer network with two inputs and one output. If the two-dimensional 
input space is mapped to the x-y Cartesian plane and the output of the network is mapped to 
the z dimension, then a geometric picture of network operation emerges. Because all inputs are 
limited to the range between 0 and 1, as discussed earlier, the domain of the mapping is a square 
of unit area in the first quadrant. Referring to the inputs 0{] and O^ as x and y, respectively, the 
value of the network output for any input x and y is f(x * W^ + y * W^j) [where f() is the activa- 
tion function of the node as discussed in Section A above]. An interesting contour to examine is 
the intersection of the z = 0.5 plane and the network output mapped into input space as described 
above. The equation for this contour is the line x * WL+ y * W^= 0, with z = 0.5. When pro- 
jected into the x-y plane, this is a line with slope -(W^/W^j). Figure 3-3 shows an example of 
the mapping that was just described and the intersection of this function with the z = 0.5 plane. 

Returning to the pattern classification problem that was discussed in Section I, this network 
should be thought of as dividing the input space into two half-spaces for which the output of the 
one node would be greater than 0.5 in one half-space, and less than 0.5 in the other half-space. 
The value of the network output for any point in input space depends upon which half-space the 
point is in, how far the point is from the 0.5 dividing line, and the magnitude of WQJ and W^. 
The magnitudes of the weights determine the steepness of the "step,** while the relative values of 
the two weights determine the orientation of the "step." 

Figure 3-3 shows an example where the dividing line does not pass through the origin. In 
order to allow this possibility, an offset is added to the activation function. This offset can be 
implemented as a weight to a fixed third input with a value of 1.0. The equation for the dividing 
line is then x * W^* y * W^ + 1.0 * W^2 = 0. This is now the equation for a line with slope of 
-(W^J/W^J) and an intercept of -(W^/W^). The advantage of implementing the threshold as an 
extra node is that its weight value can be modified in the same way as any other weights in the 
network. Thus, the threshold of each node can be trained without changing the basic back- 
propagation algorithm. In all networks in the rest of this report, it will be assumed that each 
layer (except for the output layer) has an extra dummy node with an output fixed at 1.0 which 
allows the nodes in the next layer to establish nonzero thresholds. 
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Figure 3-3.    Activation function mapped into 2-dimensional input space. 

Building on this geometric interpretation of a simple one-layer, one-node two-input network, 
a one-layer two-input network with more than one node would have several dividing lines in 
input space, one associated with each node. Such a network could be used for some pattern clas- 
sification problems; however, a network in which each output can divide input space into half 
planes is useful in defining only the simplest of regions and is not even capable of defining 
regions as simple as those shown previously in Figures 2-2 and 2-3. 

In order to define more complex regions, another layer must be added to the network. The 
effect is that the second layer can form combinations of half planes. The types of regions that the 
network can map out in input space are now greatly expanded. The basic principle of examining 
the 0.5 "dividing line" remains. The nodes in the first layer still define these smooth steps in 
input space that can be represented by the dividing line, and a measure of how steep the step is. 
A node in the second layer maps out a function that is dependent on a weighted sum of these 
smooth steps. As the weights become large, the smooth steps become steep steps and in the limit, 
the dividing line represents the transition from the output being 1 and the output being 0. In this 
limit, the node in the second layer will be able to define any convex polygon region in input 
space by forming a weighted sum of these dividing lines. In the practical case of smaller weights, 
and smooth steps in input space, a 2-layer node will be capable of defining a much broader class 
of convex regions in the same fashion. 
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Similarly, a three-layer net expands even further the types of regions that can be represented 
in input space. As a two-layer network can form convex regions in input space, a three-layer net 
forms combinations of convex regions. With such a net, regions which are connected or uncon- 
nected, convex or nonconvex, can be created. Such a network is capable of representing a very 
broad class of, if not all possible, regions. 

Adding more inputs to the network expands the dimensionality of the input space making 
pictures impossible, but the geometric principles remain. In n-dimensional input space, a one- 
layer network defines n - 1 dimension hyperplanes that divide the space into two half-spaces. The 
orientation of the hyperplanes is determined by the relative values of the weights in the network, 
and the steepness of the division is determined by the absolute magnitude of the weights. Sim- 
ilarly, a two-layer network forms combinations of half-spaces, and a node in the second layer of 
a two-layer network can define any n-dimensional convex region in input space. Finally, any 
arbitrary n-dimensional regions can be represented by an n-input three-layer network. 

The way that back-propagation networks perform pattern classification can thus be viewed 
as choosing weight patterns that define hyperplanes in input space, thereby defining the correct 
regions for the pattern classification problem. It should be clear that in order to construct convex 
regions a two-layer network is required. It should also be apparent that a minimum number of 
nodes also are required in the first layer because first-layer nodes can only represent one step in 
input space and there is no way that the output nodes could use only one half-plane separation 
to define a closed region like a square. 
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4.    ARCHITECTURAL OVERVIEW OF DESIGN 

With an understanding of the back-propagation algorithm and the problems it can solve, it 
is possible to consider the implementation of the algorithm in dedicated custom hardware. Al- 
though specific circuit designs will not be discussed at this point, it is important to define the 
major blocks that will be required in the implementation and consider the implementation op- 
tions. This discussion will provide questions, rather than answers, to be addressed by the simula- 
tion results that are presented in Section 5. After the basic architecture has been proposed here, 
the performance of the algorithm will be evaluated in the presence of approximations and other 
artifacts that will be introduced by the implementation. Once this is done, specific circuits that 
meet the restrictions revealed by the simulations will be discussed. 

It is important to define the major design constraints before defining the architecture. The 
first design constraint and the most significant is the technology that is to be used. Although 
there have been proposals in the literature to use many more exotic technologies such as CCD 
arrays [Agranat, 87] [Chiang, 87] [Sage, 86] and optics [Abu-Mostafa, 87] to implement neural 
network structures (some of these will be discussed in Section 7), the goal of this project is to 
use a technology that is readily available, inexpensive, and well understood. Additionally, this 
project is a part of a larger project, the goal of which is to implement large-scale artificial neural 
architectures in wafer-scale VLSI. For all these reasons, this design is to be implemented in a 
standard digital CMOS VLSI process technology as available through the MOSIS foundry. Thus, 
all circuits considered here will be implementable in such a technology. 

Within this technology constraint, the possible architectures range from a fully digital sys- 
tolic array processor to a fully analog circuit in which the physics of the MOS devices is used to 
implement the various operations required by the back-propagation algorithm. Each of these ap- 
proaches has its strengths and weaknesses, and many of them will be discussed in much greater 
detail in Section 8 which attempts to compare these various implementation strategies. The goal 
of this design project, however, is to attempt to use the physics of the devices wherever possible 
to implement the computations. For this reason, a fully digital approach will be used mainly as a 
reference for comparison with the other circuit approaches. Additionally, it is important that the 
final design be flexible enough and well enough controlled to make it useful in the investigation 
of how the back-propagation algorithm works on various problems. 

The first block that must be constructed is the basic multi-layered perceptron network that 
will be used to propagate the input signals forward. This network is composed of blocks that 
form the weighted sum of many input signals and produce an output after passing through an 
"activation" function. It is important that the weights are easily modifiable if the network is to 
learn new weight patterns, and it would be attractive if the network could be initialized from the 
external world. 

The simplest way to implement such a block is with resistors, switches, and operational 
amplifiers. Such a circuit is shown in Figure 4-1. In such an implementation, the signals are 
analog voltages that produce currents through the weighting resistors. The size of the resistors 
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Figure 4-1.    Simple Op-Amp and resistor circuit. 

determines the strength of the weight in this circuit but the computation in the network is per- 
formed in continuous analog signals. In a CMOS process, resistors with programmable weights 
are not readily available but there are several transistor circuits that closely approximate the re- 
sistor's characteristics. Although the specifics of the possible circuit implementation will be dis- 
cussed in Section 6, the transistor circuits that can be used as programmable resistors can 
basically be divided into two categories. 

The first category of circuits is that in which the value of the resistive connection is digitally 
controlled. These circuits work on the principle of parallel resistor networks, with each "resistor" 
circuit having a standard resistance. The value of the weight is determined by how many of the 
resistor circuits are connected in parallel at a given connection. In these circuits there is generally 
a digital register associated with each weight and the number stored in that register controls the 
number of parallel devices at that connection. The advantages of this type of circuit are that it is 
easy to determine what all the weights in the network are at any time by simply reading these 
digital registers, and it is easy to set all the weights to a certain weight pattern simply by writing 
to all the registers. The disadvantage of encoding the weights digitally is that the weight resolu- 
tion is limited by the size of the registers, and increasing the size of the registers quickly leads to 
unacceptably large circuits. 

The second category of circuits has weights that are controlled by continuous analog signals. 
In these circuits the resistance is changed by changing the operating region of the circuit that is 
used to implement the resistor. The obvious advantage of this type of circuitry is that it appears 
to eliminate the resolution issue that is introduced by digital quantization. Additionally, since 
small "resistors" don't require many devices operating in parallel, but rather one device operating 
in a different region, these circuits tend to be significantly smaller than the digital circuits. The 
disadvantage of such circuits, however, is that it is more difficult to set the weights in the net- 
work by writing a stored analog value and it is also quite difficult to read the state at any one 
point in time. This circuitry is further complicated by the fact that the circuits that control the 
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values of the weights store the analog signal in the form of charge. This tends to be a dynamic 
storage in the sense that a value cannot be held indefinitely when the circuitry is implemented in 
standard CMOS circuitry, so the system must constantly refresh these values and bring them 
back to their desired levels. 

Although it is certainly not clear which of these types of circuits is best since they both seem 
to have drawbacks, the digitally encoded weighting scheme will be proposed for use in this 
design. Although the fully analog design approach yields more compact designs (as will be dis- 
cussed in Section 8), the complex nature of storing analog signals in CMOS technology might 
compromise the reliability of a back-propagation system. 

Choice of word length is the most critical design decision arising from the use of digitally 
encoded weights. How many bits must the digital register contain in order to represent the 
weights with sufficient precision to implement the back-propagation algorithm, and how can a 
circuit be constructed that will have the required precision? This is the principal question to be 
addressed extensively in Section 5 on simulations and in later sections. 

The other architectural issue requiring careful consideration is the technique for implement- 
ing the back-propagation learning algorithm. The issue is how to generate the signals for each 
weight in the network that indicate how to change its value during learning. The learning algo- 
rithm requires two signals to be multiplied together in order to determine how to change wi 
These signals, as shown in Equation (3-19), are O2"1 (the output of the node from which the 
weight emanates) and 6;x(the 8 signal associated with the node which the weight is entering). The 
key observation is that the 8 signals in one layer are found by simply taking the weighted sum of 
the 6 signals in the next layer and multiplying this weighted sum by f(Oj2). What emerges is a 
network that is propagating the error signal "backward*' from the output of the network. Addi- 
tionally, it is important to notice that the weights used for propagating the error signal backward 
have the same value as those that were used to propagate the original signal forward. 

Now it is possible to understand the basic structure of the back-propagation architecture as 
presented in Figure 4-2 which shows one layer of a back-propagation network. This structure is 
modular in the sense that these modules can be connected directly together to form a multi-layer 
network. The basic structure as shown in Figure 4-2 contains a forward network that is propa- 
gating the signals in from the left and down to the bottom of the figure (drawn with thin lines), 
and a backward network intertwined with the forward structure that is propagating the error sig- 
nals back from the outputs at the bottom and out to the left of the figure (drawn with thick 
lines). The nodes of this layer are at the bottom of the picture, and the weights are arranged in 
an array with the columns containing all the forward weights that go to a particular node. 
Equivalently, a row contains all the weights that go from a particular input. At each location in 
the weight array is a weight structure that is composed of three sub-blocks. Taking advantage of 
the fact that the corresponding weights in the forward and backward networks always have the 
same value, the weight structure has one digital register to establish the size of the weight, and 
two other blocks — one presents this weight to the forward network, the other to the backward 
network. 
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Figure 4-2.    Block architecture of design. 
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Another important concept behind this architecture is that all the signals required by the 
back-propagation algorithm in order to perform learning are always available at the appropriate 
weight structures in the form of analog signals. The signal that is feeding W^ in the forward 
direction is O^ "] , and the signal that is fed through this weight in the backward direction is 6|. 
Thus, the calculation required to determine the weight change involves only signals that are 
already available at the weight structure. 

A node in this structure will be constructed from an amplifier that sums the input signals 
until they exceed a certain threshold, after which the amplifier saturates. This will produce the 
desired activation-function characteristic at the nodes. The back-propagation algorithm specifies 
that the 8 signal must be multiplied by the derivative of this activation function, evaluated at the 
operating point of the amplifier. This multiplication is represented by a box in the block diagram 
labeled f(   ) but, because the activation function may not be an analytic function, an important 
question to be addressed in the simulations is how closely the output of this box must match the 
derivative of the activation function of the amplifier in the network. 
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5.   SIMULATIONS 

The general architecture proposed in Section 4 raised the critical questions of weight resolu- 
tion and accuracy of approximation of the derivative of the activation function. To investigate 
the influence of these factors on the back-propagation algorithm performance, a simulation pro- 
gram, originally written by William Huang of Lincoln Laboratory, was rewritten to simulate 
the effects of the implementational artifacts. The simulator was written in C and run on a 
VAX 11780 and the outline of these simulations and the results will be presented in this section. 
A more detailed description of these simulations is presented in Appendix A. 

The goal of these simulations is to determine how certain artifacts influence the performance 
of these networks on prototypical problems and to determine when these effects become un- 
acceptably severe. Thus, the problems that were simulated were chosen using two basic criteria: 

(a) They were simple enough that the effects which were being examined could be 
observed and understood. 

(b) They were thought to contain the essential features of more complicated and 
intrinsically interesting problems. 

A.    PROBLEM DEFINITION 

Within the broad class of pattern classification which characterizes all of the simulated prob- 
lems, there are finer distinctions to be made. The first distinction among pattern classification 
problems is between those that have binary (0 or 1) input signals, and those that have continuous 
(any value between 0 and 1) input signals. The distinction between these two problems is seen 
when the pattern classification problem is observed in the theoretical "vector space" framework as 
discussed in Section 3. The simplest example would be a network that had only two inputs. The 
input space for such a problem, when represented as a plot in Cartesian coordinates, is a unit 
square in the first quadrant. A problem that had binary inputs would only be able to specify the 
class of each of the corners of the square [(0,0) (0,1) (1,1) ...], whereas a problem with analog 
inputs could specify any arbitrary regions in this input space (such as those shown in Figure 2-2). 

The significance of this distinction is the "resolution" of the class regions. In a problem that 
has digital inputs, there is considerable room in the input space between the points of interest. If 
each node in the first layer of a network divides the space into two half-planes (as in Section 3), 
then it can be seen that when there is considerable space between the points in two different 
regions, the "dividing line" can move to many different places and still have the desired effect. If, 
however, the inputs are analog, every point in input space may have a well-defined desired classi- 
fication and any movement of the "dividing line" may cause some points to be reclassified. 

Another important distinction between different types of pattern classification problems 
arises from differences in the desired outputs. Although, in Section 2, pattern classification prob- 
lems were defined generically to be those that have an output code determined by the input class, 
the coding used has ramifications for the performance of the network. As mentioned in Section 2, 
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Figure 5-1.    Classification regions in input space for simulated problems. 
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the simulations done in this project assume that there is a separate output node for each class 
and, although the desired output code has one output node with a value of 1 and all the others 
at 0, the pattern will be classified by observing which of the output nodes has the largest value. 
Another coding scheme that has been used by some researchers encodes each class with a binary 
code, of which each network output is a bit. In this coding scheme, a threshold of 0.5 is gener- 
ally used so that if the output is above the threshold then it is considered to be a 1, and if it is 
below the threshold then it is considered to be a 0. Although these two methods of coding seem 
to accomplish the same goal, the classification results will be different for points that lie near 
region boundaries. 

Three problems were simulated extensively, and the results of these simulations were used to 
determine the capability of particular hardware designs. One of the most important goals of the 
simulations was to determine how the weights in the network change during learning, and what 
effect restricting these changes in different ways has on the performance of the back-propagation 
algorithm. Two of the simulated problems had only two inputs so that the input space could be 
mapped graphically to the x-y coordinate system to facilitate a conceptual understanding of the 
network performance. The inputs to these two problems were analog values that ranged between 
0 and 1, and the class regions for these two problems are shown in Figure 5-1. The third prob- 
lem that was simulated had ten input dimensions, and five classes composed of balls in 10-space 
(all inputs are still analog and confined to the 0-1 input space). The centers of the five hyper- 
spheres were equidistant while the space between any two regions was small. Figure 5-2 shows 
graphically what a 2-dimensional equivalent to this problem would be with only two class regions 
(this figure is only to help the reader conceptualize the shape of the actual 10-dimensional prob- 
lem). The training data for each of these problems consisted of an equal number of data points 
chosen randomly from each of the class regions in the problem. It is important to note that, in 
addition to the fact that the third problem has 10 inputs while the others have 2, there is another 
significant difference between them. While the class regions in the "circle" and "corner" problems 
abut, there is space between the defined class regions of the 10-dimensional problem for which no 
class is defined. As mentioned in Section 2, this undefined space puts a much less precise con- 
straint on the placement of the class boundaries and this will be reflected in the simulation 
results. 

B.   THE QUESTIONS AND RESULTS 

The goal of the simulations was to discover what effects the anticipated hardware artifacts 
would have on the performance of the back-propagation algorithm. The artifacts that were con- 
sidered should first be separated into two categories: those that affect representation, and those 
that affect learning. Although some artifacts affect both representation and learning, these effects 
will be viewed independently. 

1.   Quantized Representation 

The effects of weight quantization on representation were investigated first, and these results 
provide a frame of reference for the investigation of the weight quantization effects on learning. 
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Figure 5-2.   2-dimensional equivalent of 10-dimensional problem. 

To investigate this question, back-propagation was used to learn a weight pattern for a particular 
network and problem with high-precision weights and then the network performance was mea- 
sured as a function of weight quantization. The network architecture used in these experiments 
had two layers, and the number of nodes in the hidden layer was an experimental parameter. A 
typical architecture with four nodes in the hidden layer is shown in Figure 5-3. 

This question brings up a subtle, but significant, issue that is related to the idea of weight 
quantization. It is important to recognize that, in a back-propagation network, specifying the 
number of bits of quantization is not sufficient; it is also essential to specify the range of weight 
values to be represented. The reason that this is an essential point is that for a given problem, 
regardless of the number of bits used in the representation, the problem cannot be solved with 
that system if the weights cannot represent large enough values. On the other hand, if the weights 
can take on a wide range of values, but have only a very small number of bits of resolution, then 
the net will still be unable to represent many problems because the error in weight representation 
will be too large. In order to emphasize the significance of this point, quantization will be mea- 
sured in this section in terms of both the number of bits used (including sign) and the magnitude 
of largest representable value. 
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Figure 5-3.   2-layer network (2 inputs, 2 outputs, and 4 hidden nodes). 

In the simulations, the range of the quantized weights used for a particular problem was 
determined by the largest weight in the high-precision weight set. In fact, each layer of the net- 
work was quantized to a different range as determined by the largest weight in that layer (it was 
assumed that the same number of bits was available to represent the weights in each layer). The 
training data were then applied to a network with the quantized weight pattern and the number 
of points in the training set that had been misclassified by the quantization was used to measure 
the effect of the weight quantization. Additionally, in the problems that had two input dimen- 
sions, the entire weight space was scanned with very fine resolution and the percentage of the 
input space that was classified differently by the quantized and the unquantized weight patterns 
was used as a more precise measure of the effects of weight quantization. The results are sum- 
marized in Tables 5-1 (a) through (c). 

There are a number of things worth noting in these tables. First of all, it should be noticed 
that the "10-Dimensional" problem had the lowest misclassification rate with and without quanti- 
zation due to the fact that the class regions in this problem do not abut. The result is that, even 
when the weights were quantized (restricting the location of dividing lines to discrete orientations 
and locations), the network was able to define regions of high-enough resolution to correctly 
classify all the training vectors. In the "Circle** and "Corner" problems, however, the regions 
covered the entire space so the boundaries had to be defined in exactly the right place in order 
to correctly classify all the training patterns. 
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The initial weight patterns for this experiment were learned with very high precision; how- 
ever, in the "Circle" and "Corner" problems, it was difficult to decide when the learning process 
should be stopped. Although the first few passes through the training data caused the weights to 
change rather significantly until a rough outline of the decision regions had been formed, the 
learning process then continued at a progressively slower rate. Later, learning was generally char- 
acterized by little movement of the "dividing" lines in input space, but a steady increase in the 
magnitude of the weights, and a slight refining of the positions of the "dividing" lines. 

In these experiments, learning was continued until two objectives were met. The first was 
that the percentage of misciassified training vectors fell below 5 percent, and the second was that 
the rate of change of this misclassification percentage from one pass to the next approached zero. 
Continued learning would have improved performance further; however, for the purposes of this 
experiment, it was the difference between the quantized-weight and high-precision-weight perfor- 
mance that was most significant and the absolute performance of the high-precision-weight pat- 
tern was less important. The fifth column of Tables 5-l(a) through (c) indicates the performance 
of the weight pattern before quantization. 

TABLE 5-1(a) 

Percentage Reclassification After Quantization for "Circle" Problem 

Number 
of 

Hidden 
Nodes 

No. 
of Bits* 

Used 

Layer-1 
Maximum 

Weight 

Layer-2 
Maximum 

Weight 

Training 
Vectors 

Misciassified 
with High- 
Precision 
Weights 
(percent) 

Training 
Vectors 

Misciassified 
with 

Quantization 
(percent) 

Percent 
Input 
Field 

Rectassified 

4 
4 
4 
4 

4 
5 
6 
8 

18.2 9.8 2.2 

26.8 
6.2 
1.8 
2.0 

9 
3 
2 

<1 

8 
8 
8 
8 

4 
5 
6 
8 

17.8t 9.9 2.4 

6.6 
6.0 
2.8 
3.4 

5 
6 
2 

<1 
12 
12 
12 
12 

4 
5 
6 
8 

17.6 10.1 3.2 

30.6 
3.8 
3.2 
2.6 

9 
3 
1 

<1 

* Including sign bit. 

t The entire weight pattern for this run is shown in Appendix A. 
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TABLE 5-1 (b) 

Percentage Reclassification After Quantization for  "Corner" Problem 

Number 
of 

Hidden 
Nodes 

No. 
of Bits* 

Used 

Layer-1 
Maximum 

Weight 

Layer-2 
Maximum 

Weight 

Training 
Vectors 

Misciassified 
with High- 
Precision 
Weights 
(percent) 

Training 
Vectors 

Misciassified 
with 

Quantized 
Weights 
(percent) 

Percent 
Input 
Space 

Reclassified 

4 
4 
4 
4 

4 
5 
6 
8 

26.2 14.4 2.6 

8.6 
4.2 
2.6 
2.8 

12 
4 
2 
1 

8 
8 
8 
8 

4 
5 
6 
8 

26.2t 14.2 2.6 

6.0 
6.0 
3.0 
2.8 

7 
5 
3 
1 

12 
12 
12 
12 

4 
5 
6 
8 

26.2 14.1 2.6 

6.8 
5.2 
6.8 
2.8 

8 
4 
2 
1 

• Including sign bit. 

t The entire weight pattern for this run is shown in Appendix A. 
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TABLE 5-1 (c) 

Percentage Reclassification After Quantization 
for the  "10-Dimensional r Problem 

Training Training 

Number 
of 

Hidden 
Nodes 

No. Layer-1 Layer-2 
Vectors 

Misclassified 
Vectors 

Misclassified 
of Bits* Maximum Maximum with High- with 

Used Weight Weight Precision Quantized 
Weights Weights 
(percent) (percent) 

4 4 1.5 
4 
4 

5 
6 

10.1 8.3 0 
0 
0 

4 8 0 

8 4 0.6 
8 
8 

5 
6 

6.3 7.1 0 
0 
0 

8 8 0 
12 4 0 
12 
12 

5 
6 

6.6 6.3 0 
0 
0 

12 8 0 

* Includin g sign bit. 
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Although, as discussed above, word length is not a sufficient metric for determining solvabil- 
ity, it is an important factor for determining implementability. As Tables 5-1 indicate, all the test 
problems exhibited less than 5-percent reclassification when the weights were quantized with 
6 bits over a range that included the largest unquantized weight. Because the largest weights in 
the simulated problems tended to be about 16, this translates into a minimum step size of about 
0.5. It is worth noting that these results are best-case in the sense that the weight range was 
known in advance, and the representable range was set to match the required range exactly. 
Additionally, in these simulations the weight range was set separately for each layer. In order to 
achieve comparable performance in a circuit implementation, the range that each layer can 
represent would have to be adjustable. 

2.    Range-Limited Learning 

As discussed in the previous section, there are two effects that result from quantizing the 
weights in a network. The first is that the weights can only be changed by discrete values of a 
given size, and the second is that the range of weights that can be represented is limited. In an 
attempt to separate the influence of these two effects, the first learning simulations involved range 
limiting with unquantized weights. 

In these simulations, different results were obtained with different problems, and when dif- 
ferent architectures were used to implement the same problem. In some cases, restricting the 
range seemed to cause learning to stop as soon as one of the weights reached the range limit, 
and sometimes learning continued until several weights hit the range limit, and then stopped. In 
these cases, the final weight pattern appeared to be very much like the pattern that was learned 
without range limitations but with all the large weights clipped at the range limit. 

Surprisingly, limiting the range of the weights sometimes caused substantial differences in the 
final weight pattern. When some of the weights hit the limit in the network that was learning 
with range limits, all the weights would not just stop increasing; rather, the network would learn 
a weight pattern that was not like the pattern learned without range limitations. A particular 
instance of the learning in a new direction occurred when the circle pattern was learned by a 
network that had 12 nodes in the first layer of a two-layer network. From the perspective of di- 
viding lines in input space, the network learned a weight pattern that only relied on the dividing 
lines introduced by four of the hidden nodes until some of the weights reached the range limit. 
The network that had no range limit continued to refine the position of these dividing lines and 
increase the steepness of the step that they introduced, but the network that had range limitations 
began to recruit more of the dividing lines introduced by other hidden nodes. 

This adaptation to range limitation did not occur in all cases, and it was sometimes observed 
that limiting the range simply stopped the learning process. This will make it very difficult for 
any hardware network to learn these problems. It does seem, however, that by increasing the 
number of hidden nodes in a network, the network can (in some cases) compensate for range 
restrictions on the network weights. 
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The most severe difficulty that results from the fact that different problems require different 
weight ranges is the fact that no method has been developed to determine, in advance, the range 
of weights required for a particular problem. In the simulations this was always determined 
empirically by simulating with no range limitation first. The implication for implementation is 
that a robust system will require that there be some mechanism for adjusting the range of repre- 
sentable weights for the given number of bits of resolution. 

3.    Fully Quantized Learning 

Learning weight patterns in a network with quantized and range-limited weights was the 
most complicated task that was simulated. In this situation, it was found that the size of the 
"unit increment" determined the success of the simulation. Once again, it was a trade-off between 
range and resolution. If the weights were quantized to a small range, then the unit increment was 
usually acceptably small so that the network could begin learning correctly; however, the weights 
would soon reach the range limit and this would restrict how well the network could learn the 
pattern. If the range were larger, then the unit increment that was associated with a given resolu- 
tion might be too large for learning to proceed at all. The successful simulations thus required a 
careful trade-off between these two factors. 

In simulations that began with very coarse quantization or very large ranges, the learning 
coefficient had to be quite large before any of the weights would change at all. When they did 
change, however, the steps were often too large and the result was that the network could not 
learn a solution to the problem and the weights just continued to fluctuate (generally only a 
small subset of the weights was changing and only over a very limited range). 

More successful simulations would approach a solution to a point where only a few percent 
of the training vectors were not classified correctly. At this point the weights would continue to 
change, but they would oscillate about a specific value, never really getting much larger or much 
smaller, and never really improving or degrading the performance of the network any more. This 
generally occurred after some of the weights had reached the range limit. 

Tables 5-2(a) through (c) show some of the convergence data which indicate how quickly the 
network was able to converge to a solution to a particular problem with a specific range/resolu- 
tion and how good the eventual solution was. Although "convergence" to a solution is a subjec- 
tive measure of performance, it was found that there was a very clear distinction between net- 
works that had "converged" to a partial solution to a problem, and those that simply had not 
solved the problem. Problems that "converged" to a solution formed regions in space that 
roughly matched the class regions in the training data. These problems did not necessarily find 
the exact regions, but examination of the regions that they did form revealed that they were of 
the same basic shape and location as those in the training data. Problems that did not converge 
often just classified the entire input space as one class; other times, regions were formed that 
simply did not match those in the input data. With the high-dimensional problem in which the 
class regions did not span the input space, the network was able to converge to a solution in 
which all data points were classified correctly. In the problems in which the regions did span the 
entire input space, a 100-percent correct solution was never reached. 
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TABLE 5-2(a) 

Quantized Learning with the  "Circle" Problem 

Architecture 
of 

Network 

No. of 
Bits 

Used 

Layer-1 
Maximum 
Observed 
Weight 

Layer-2 
Maximum 
Observed 
Weight 

No. of 
Training 
Vectors 
Applied 

Percent 
Misclassified 

2-8-2 No* quantization 20 11 15,000 2.4 

2-8-2 8 8+ 15,000 2.2 

2-8-2 8* 20,000 7.2 

* 32-bit precision of computer. 

t Maximum weight limited to 12. 

TABLE 52(b) 

Quantized Learning with the "Comer" Problem 

Architecture 
of 

Network 

No. of 
Bits 

Used 

Layer-1 
Maximum 
Observed 
Weight 

Layer-2 
Maximum 
Observed 
Weight 

No. of 
Training 
Vectors 
Applied 

Percent 
Misclassified 

2-8-2 No* quantization 23.3 13.1 30,000 2.8 

2-8-2 8 12t 11.3* 20,000 8.0 

2-8-2 6 No convergence 

* 32-bit precision of computer, 

t Maximum weight limited to 12. 
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TABLE 52(c) 

Quantized Learning with the  "10-Dimensional" Problem 

Architecture 
of 

Network 

No. of 
Bits 

Used 

Layer-1 
Maximum 
Observed 
Weight 

Layer-2 
Maximum 
Observed 
Weight 

No. of 
Training 
Vectors 
Applied 

Percent 
Misclassified 

10-8-5 No* quantization 4.25 4.89 2,000 0 

10-8-5 8 4 4 10,000 0 

10-8-5 6 No convergence 

* 32-bit precision of computer. 

In learning experiments, a large number of parameters that can be adjusted include: the 
number of hidden nodes, the learning rate, the order of training vector application, the number 
of network layers, and (when the weights are being quantized) the number of bits used and the 
weight range. Determining the optimum setting of all these parameters is quite complicated, 
although a set of values was determined which seemed to work acceptably on most problems 
(these values are described in Appendix A). On some problems, however, these standard settings 
did not work, and they were adjusted in an attempt to optimize performance. A table entry of 
"No Convergence" indicates that no solution was learned with any combination of these parame- 
ters that was tried. 

These results show that, although 6 bits were sufficient to represent a pattern that had 
already been learned (see Section 5-B-l), it did not provide sufficient resolution to perform the 
learning. Even in the one case where 6 bits did result in a solution to the "Circle" problem, this 
was only achieved after a careful adjustment of the parameters. Although 8 bits were sufficient to 
allow the network to converge to a solution in most cases, for the "Corner" problem the range 
had to be limited to ±12 in order to find a solution with only 8 bits. With this range limitation, 
the best solution that was learned misclassified 8 percent of the training vectors. Further simula- 
tion revealed that, even when high-precision weights were used, this range limitation prevents the 
problem from being solved to better than 5-percent misclassification. 

To summarize, fewer than 8 bits prevented the network from learning weight patterns in 
almost all cases. To learn most of the test problems, 8 bits provided sufficient resolution; how- 
ever, more bits might be needed to learn problems that required large weights such as the 
"Corner" problem. The most important figure seems to be the unit step size, and in these prob- 
lems it was found that this had to be about 0.1 or smaller to permit learning. 
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4.    Slope Approximation 

One of the anticipated problems with an analog implementation of the back-propagation 
algorithm is the determination of the derivative of the activation function of the nodes. In antici- 
pation of this being an extremely difficult calculation to perform in analog hardware, simulations 
were done that attempted to examine the effects of approximating this value. 

The activation function that was used in these simulations was the one described in [Rumel- 
hart, 86] and shown in Figure 3-2. The derivative is shown in Figure 5-4 along with a function 
that approximates this derivative with a pair of threshold functions. The approximation can take 
on only one of two possible values. If the output of a node is very large or very small, then the 
derivative will be approximated by a small value; but, if the output is in the middle of the range, 
then the derivative will be approximated with a larger value. This very simple approximation can 
easily be implemented in hardware, and Figure 5-5 shows that the activation function which is 
described by the derivative approximation is very similar to the sigmoidal activation function that 
was used in these simulations. The simulation results are shown in Tables 5-3(a) through (c). 
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Figure 5-4.    Derivative of activation function and approximation. 
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Figure 5-5.    Comparison of activation function and approximation. 

TABLE 53(a) 

Quantized Learning with Slope Approximation ("Circle" Problem) 

Architecture 
of 

Network 

No. of 
Bits 

Used 

Layer-1 
Maximum 

Weight 

Layer-2 
Maximum 

Weight 

No. of 
Training 
Vectors 
Applied 

Percent 
Misclassified 

2-8-2 No* quantization 14.8 9.7 15,000 2.0 

2-8-2 8 8 8 15,000 4.0 

2-8-2 6 No convergence 

* 32-bit precision of computer. 
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TABLE 53(b) 

Quantized Learning with Slope Approximation ("Corner" Problem) 

Architecture 
of 

Network 

No. of 
Bits 

Used 

Layer-1 
Maximum 

Weight 

Layer-2 
Maximum 

Weight 

No. of 
Training 
Vectors 
Applied 

Percent 
Misclassified 

2-8-2 No* quantization 27.5 11.2 30,000 3.4 

2-8-2 8 12.0 6.8 20,000 9.8 

2-8-2 6 No convergence 

* 32-bit precision of computer. 

TABLE 5-3(c) 

Quantized Learning with Slope Approximation ("10-Dimensional" Problem) 

Architecture 
of 

Network 

No. of 
Bits 

Used 

Layer-1 
Maximum 
Observed 
Weight 

Layer-2 
Maximum 
Observed 
Weight 

No. of 
Training 
Vectors 
Applied 

Percent 
Misclassified 

10-8-5 No* quantization 5.6 5.7 2,000 0 

10-8-5 8 4 4 10,000 0 

10-8-5 6 No convergence 

* 32-bit precision of computer. 
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These results should be compared with the data in Tables 5-2(a) through (c). This compari- 
son reveals that, although the slope approximation seems to result in a performance degradation 
as measured in terms of the percentage of training vectors that are misclassified after a given 
amount of learning, the networks are still capable of learning the experimental problems with 
8 bits of weight quantization. One noticeable difference in the two sets of results is that the net- 
work was no longer able to find a solution to the "Circle" problem with only 6 bits of resolution 
when the slope approximation was used. 

5.    Nonrandom Initialization 

Most of the simulation work in this project was done to determine the effects of hardware 
artifacts on the back-propagation algorithm. During these simulations, the issue of weight initiali- 
zation arose and a new weight initialization algorithm was developed. Conventionally, the weights 
are initialized to random values that are usually restricted to some range. Although this random- 
ness seems to start the network in a "blank" state, a nonrandom algorithm which takes advan- 
tage of known restrictions on the input data might be more effective. 

In all the problems that were simulated here, all input variables were restricted to values 
between 0 and 1 and the networks had two layers. As discussed in Section 3, the weights in the 
first layer of the network determine the orientation and steepness of the "smooth step" output 
function of a first-layer node as mapped into input space. Additionally, the half-way point of this 
output function maps into a hyperplane that divides the input space into two half-spaces. When 
the weights are initialized randomly, this hyperplane is not guaranteed to even pass through the 
region of input space to which all of the input data have been restricted. With this in mind, a 
nonrandom weight initialization algorithm was developed which requires all these dividing hyper- 
planes to pass through the middle of the input space to which all input data points are restricted. 

Specifically, consider a network with n inputs. A given node in the first layer will have n + 1 
weights associated with it: one to each of the inputs, and one to the "always one" node that is 
used to generate an offset. The weights from the inputs define the orientation of a dividing 
hyperplane which passes through the origin in the input n-space. These weights can be thought of 
as an n-dimensional vector that is normal to this hyperplane, and the magnitude of this vector 
will determine the steepness of the output function of the node as mapped into this input space. 
The nonrandom weight initialization algorithm allows these n weights to be selected randomly, 
but they are then scaled uniformly so that this normal vector has a predetermined magnitude. 
The weight to the offset node can then be chosen such that the hyperplane passes through the 
point (0.5,0.5,...,0.5). Once all weights in the first layer are initialized in this way, the weights in 
the second layer are initialized uniformly to a number that is 1 / m, where m is the number of 
nodes in the first layer. This prevents the second-layer nodes from receiving extremely large posi- 
tive or negative inputs at first so that they can most readily learn to become sensitive to the 
nodes in the first layer that have the desired orientations. 

In the simulations of the 2-dimensional problems (where there are two inputs to the net- 
work), the dividing hyperplanes are lines, and the algorithm that was used generated weights so 
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that these dividing lines not only passed through the center of the input space, but so that the 
orientations of the dividing lines introduced by the first-layer nodes actually spanned 360°. This 
nonrandom initialization method was not used for the "lO-Dimensional" problem because it was 
developed after those simulations had been completed. 

6.    Simulation Conclusions 

To summarize, the simulations yielded several important results. First of all it became clear 
that because some problems require weights with a large dynamic range, the ability to adjust the 
dynamic range, at the expense of resolution, would improve the versatility of any implementa- 
tion. Still greater versatility is achievable if this can be done on a layer-by-layer basis. 

A second result was the observation that there is a disparity between the resolution required 
for weight representation during learning and that required to represent a previously learned 
pattern. It was found that a minimum step size of about 0.5, which translates to 6 bits including 
the sign bit in the simulated problems, gave performance that was considered to be acceptable for 
representing previously learned weight patterns. A finer resolution of about 0.1, which corresponds 
to 8 bits in the simulated problems, was required during learning. 

Lastly, the simulations also demonstrated that a very simple slope approximation technique 
degraded network performance. The effect, however, seems relatively minor. 

A final observation that resulted from the simulations was that, in order to have certain 
networks perform correctly, several learning parameters had to be carefully adjusted. The implica- 
tion is that a successful implementation will require that these parameters be adjustable. 
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6.    SPECIFIC SUB-CIRCUITS 

A.    PROCESSOR 

The basic circuit required to implement a back-propagation network forms the weighted sum 
of a number of inputs and passes this through a nonlinear activation function. Two approaches 
to the design of this circuitry have been investigated, both of which send analog signals through 
digitally controlled weighting circuitry. These circuits should be thought of as Multiplying Digital 
to Analog Converters (or MDACs) because they convert digital weights to an analog conduc- 
tance, and multiply this value by the incoming analog signal. 

1.    Voltage-Driven MDACs 

a. Circuit Overview 

The first circuit that was examined was proposed by Jack Raffel at Lincoln Laboratory 
[Raffel, 87]. This circuit represents the Oj2 signals as voltages which drive the sources of MOS 
devices operating in the linear region that act as weights. Figure 6-1 shows a block diagram of 
this circuit. A similar circuit has been designed for implementing a Boltzmann Machine 
[Alspector, 87]. Although this figure depicts only one node with two weights for illustration, the 
fan-in can be expanded by simply adding more weight circuits. 

In this design, signed weights are implemented by developing two summing currents, one 
excitory (Ie) and one inhibitory (Ij) and taking their difference. A positive weight develops a cur- 
rent in the excitation sum, and a negative weight develops a current in the inhibition sum. The 
current on the excitation line is subtracted from the current of the inhibition summing line with 
the first Op-Amp in Figure 6-1, and this net current is input to a transimpedance amplifier. The 
output voltage signal of this amplifier is proportional to the difference between the excitation and 
inhibition currents. This circuit allows 2-quadrant operation in the sense that the input voltage, 
which has to be positive, can be multiplied by either a positive or negative weight. 

A schematic of the weight circuitry used in this design is shown in Figure 6-2. The conduc- 
tance of the weight is modulated by digitally programming the effective width of the MOS 
device. In this particular design, the weight is digitally encoded with a 5-bit (including sign) regis- 
ter. Because the gate voltage is to be driven by a 5-V dc digital signal, it is important that the 
drain voltage of the active devices stay well below this level to assure that the devices remain in 
the linear region of operation. Thus, the 0 to 1 range of the signals must be mapped to some- 
thing like a 0- to 1-V range in the voltages used to represent these signals. 

b. Performance 

This design was implemented by Jim Mann of the Digital Integrated Circuits Group at Lin- 
coln Laboratory and fabricated through the MOSIS foundry. The performance of this design was 
investigated as a part of this research project by implementing a simple Hamming network with 
the circuit. That evaluation and the results that came from it were reported in [Raffel, 87]. Those 
results are summarized here. 

43 



in 

in 

CONTROL 
REGISTER 

POSITIVE 
WEIGHT 

NEGATIVE 
WEIGHT 

CONTROL 
REGISTER 

POSITIVE 
WEIGHT 

NEGATIVE 
WEIGHT 

Figure 6-1.    Block diagram of voltage-driven MDAC circuit. 
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Figure 6-2.    Weight circuitry for voltage-driven MDAC. 

The circuit was implemented in a 3-/um p-well CMOS process. The silicon area required was 
28 mm2 and included 512 2-quadrant weights each of which had 5-bit resolution (including sign). 
With a unit weight, as the input voltage varied from 0 to 1 V, the current through the weight 
ranged from 0 to 25 /uA. Thus, a fully on weight with a 1-V input voltage would source 400 /uA. 
In the Hamming Net application, the MDAC array was evaluated in terms of its ability to per- 
form the weighted sum computations that would be required in the back-propagation algorithm. 
In this situation, 22-bit digital input vectors which represent speech data were applied to a 1-layer 
network in which each node computed the distance between a particular template vector and the 
applied input. 

This experiment demonstrated that the voltage-driven MDAC circuit was capable of per- 
forming the weighted sum computation, but it also illustrated some of the potential pitfalls of 
this design. One of the artifacts that was revealed by these experiments was that the currents 
driven by the input voltage signals caused clearly observable parasitic voltage drops due to the 
resistance of interconnect on the chip, thus distorting signals. 

Another important issue was power consumption. In this experiment, a 1-V input generated 
25 /xA. In a large back-propagation network, where the average magnitude of all the weights 
tends to increase as learning proceeds, currents of this level could be a problem. The power 
demand on the nodes could change dramatically, dependent upon the particular weight pattern 
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Figure 6-3.    Block diagram of current-driven circuit. 
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that is stored in the network. A node that had to drive 50 half-on weights would be required to 
source up to 10 mA, a very large amount of current. Of course, this number could be reduced by 
decreasing the transconductance of a unit weight, but the fact that this current demand is greatly 
dependent upon the particular weight configuration cannot be avoided with this design. 

These weight circuits require two operational amplifiers per node in order to perform the 
current summing as shown in Figure 6-1. The chip that was fabricated contained only the weight 
circuitry, and discrete Op-Amps were used to implement the current summing off chip. In the 
implementation of a back-propagation network, of course, the amplifiers would have to be on the 
chip and would need to be able to source several milliamps for moderate-sized application. Addi- 
tionally, they would have to have low offset. Layout area would also be a consideration, and it is 
estimated that appropriate amplifiers would occupy as much as 0.2 mm2 for each node. 

2.    Current Mirror MDAC 

a.    Circuit Overview 

An alternative design approach, proposed by Professor Harry Lee of MIT to implement the 
processor, involves extensive use of current mirrors. In this scheme, the input signals are voltages 
but, unlike the previous design, these voltages drive only the gates of MOS devices which operate 
in saturation. Again, the effective widths of the MOS devices determine the weight of the connec- 
tion, and these widths are controlled by a digital register which switches in combinations of 
parallel transistors. Thus, the current through a weight is linearly dependent upon the effective 
width of the device, and nonlinearly related to the gate voltage by the following equation: 

I = KCox^-(Vgs-Vth)-2       . (6-1) 

The block diagram in Figure 6-3, which includes the circuitry for one node with one input 
weight (of course the fan-in could be expanded by simply adding more copies of the weight cir- 
cuitry), shows that this design has some similarity to the previous one. As in the previous design, 
there are two currents developed, one that is the sum of the currents from the positive weights 
(Ic), and one that is the sum of the currents from the negative weights (I,). These currents are 
subtracted to form the net current. Additionally, as in the previous design, each weight is actually 
composed of two identical circuits: one connected to the inhibition line, and one to the excitation 
line. Although both these circuits are driven by the same input, only one is activated, depending 
upon the sign of the weight. 

Unlike the previous design, these weights sink instead of source current, and the current dif- 
ferencing is done at the inhibition node. All "negative" weights sink current out of this node, 
while the mirror serves to source a current into this node that is equal to the current being sunk 
by the "positive" weights in the excitation branch. The feedback circuitry at the bottom of Fig- 
ure 6-3 will sink the difference current between that sourced by the mirror Ic and that sunk by 
the "negative" weights Ij. 
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The output of the circuit is taken from the output of the feedback amplifier which automati- 
cally adjusts the gate voltage to cause the weighting circuit to sink Ie - Ij so, if it is used to drive 
a weight in the next layer, it will produce a current that is proportional to this difference current. 
Additionally, the effective gain of this circuit can be adjusted by adjusting the effective width of 
the feedback weight. Since this adjustment can be done with a digital register, this feature can be 
used to increase or decrease the range of the weights during operation. 

Figure 6-4 shows a detailed schematic of the actual weight circuitry. In this diagram there is 
a 5-bit digital register at the top which encodes the value of the weight in a one's-complement 
representation. The bits in this register determine the effective width of the "transistor" that is 
being driven by the input voltage by selecting the number of transistors that are being driven in 
parallel. As more and more devices are added in parallel, the current that flows into a weight 
increases. 

The configuration of the current summing circuitry requires that the weight be represented 
with the one's-complement format. If, for instance, the weights were represented in sign/magni- 
tude format and all the weights were negative, then all the weights would be attempting to source 
current from the inhibition node, but there would be no current to bias the current mirror. 

1 CONTROL 
| REGISTER 

POSITIVE 
|   WEIGHT 

1 NEGATIVE 
|   WEIGHT 

Figure 6-4.     Weight circuitry for current-driven MDA C. 
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The mirror circuit performs two important functions in this design. As mentioned previously, 
it reflects the Ie into the inhibition line, but it also reflects the voltage from the inhibition line 
back onto the excitation line. The feedback amplifier monitors the voltage at the inhibition line 
and maintains a voltage at the input to the feedback weight such that the weight will sink the 
difference in current between what is sourced by the mirror Ie and what is sunk by the active 
negative weights Ij. Thus, the drain and source of the active transistors in all weight circuits are 
held at 5 and 0 V, respectively, by the feedback in the node circuitry, and the output voltage of 
the feedback amplifier is the voltage that, when applied to a weight circuit, will cause it to sink a 
current equal to Ie - Ij. 

b.    4-Quadrant MDAC Design 

One difficulty of both designs, as proposed above, is that they only work with positive input 
signals. While this 2-quadrant operation is not a problem for the forward net which only has to 
deal with signals that range from 0 to +1, the backward net which has the 6 signals as inputs 
must be able to accept both positive and negative input signals and generate outputs that are 
positive or negative (Ij > Ie). 

Figure 6-5 shows how the current mirror MDAC design can be modified to allow it to per- 
form 4-quadrant operation. The design requires a second feedback weight in the excitation cur- 
rent summing node, and a fully differential amplifier with zero output offset voltage. The input 
and output of this circuit would now be composed of two analog signals that are equal in magni- 
tude, but opposite in sign. 

Where the 2-quadrant circuit discussed above required two weight circuits for each weight 
(one connected to the inhibition current summing node, and one to the excitation current sum- 
ming node), the 4-quadrant circuit would require four of these same circuits and they would be 
connected as shown in Figure 6-5. At any one time, one of the input voltages will be negative 
and will thus cause no current to flow through the weight circuits that it is driving. Of the four 
weighting circuits, two would represent positive weights and two would be used to represent neg- 
ative weights. In the block diagram, Wl is presenting a positive weight to the noninverted input 
signal because driving it increases lc, while W3 presents a positive weight to the inverted input 
signal because driving it will increase the inhibition current (just the desired effect when a "nega- 
tive" signal is to be multiplied by a positive weight). Likewise, W2 is a negative weight for the 
positive signal and W4 is the negative weight for the negative signal. 

The feedback circuitry is the key to how this circuit can generate the appropriate output sig- 
nals. Because the feedback amplifier is fully differential and has a 0-V output offset, only one of 
the feedback weights will ever be active at any one time. The other one will have a negative gate 
voltage, and thus be shut off. When the weights connected to the excitation summing node are 
conducting more current than those connected to the inhibition summing node, feedback weight 
FW1 will be active; but, when the weights connected to the inhibition node are conducting more 
current, feedback weight FW2 will be active. 

This 4-quadrant design allows the construction of the back-propagation network necessary to 
propagate delta signals back from the output toward the input. 
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Figure 6-5.    Block diagram of 4-quadrant MDA C. 
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c.    Resolution of the Current Mirror Weight Circuitry 

One significant problem with the weight circuit that was proposed in the previous section is 
that increasing the resolution by 1 bit effectively doubles the size of the circuit. In order to con- 
struct weights of higher resolution without this large area cost, the circuit in Figure 6-6 was pro- 
posed by myself and Professor John Wyatt of MIT. This circuit is a two-stage design that works 
on the principle of increasing resolution by dividing the smallest weight, instead of adding larger 
ones. In this circuit, transistor Ml is of "unit" width and its gate is driven by the input voltage 
to the weight. Only a fraction of the current that is conducted by this device, however, is drawn 
from the current in the current summing node; the rest of the current is drawn from a separate 
power supply. The second-stage circuitry determines what fraction of this current is taken from 
the summing node, and thus determines the effective value of the least-significant bits. 

The advantage of this architecture is that doubling the number of bits only doubles the area, 
rather than increasing it exponentially as the more conventional design would. For this project, 
that means that a 10-bit weighting circuit will take about twice the area of a 5-bit design rather 
than 32X the area. 

Figure 6-6.    High-resolution current mirror weight circuitry. 
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3.    Summary of MDAC Processors 

There have been two basic MDAC processor circuits presented here. The first one, referred 
to as "Voltage-Driven," uses the MOS devices in the linear region as resistors and sums currents 
with Op-Amps. The second circuit, referred to as "Current-Driven," uses MOS devices in the sat- 
uration region as current sources. 

Although both designs have been investigated as a part of this research, it is the current- 
driven design that seems more attractive for the implementation of the back-propagation algo- 
rithm. First of all, the voltage-driven design requires the amplifiers to source a good deal of 
current, and the load on these amplifiers depends upon the particular weight configuration. 
Additionally, the signal can be distorted by resistive losses across the circuit. 

Significantly, a method of implementing a 4-quadrant MDAC has been developed for the 
current-driven circuit and a technique has been discovered to greatly reduce the area required to 
implement a weight of a given resolution with this implementation. These features, in addition to 
the points mentioned above, clearly indicate that the current-driven design is superior for the 
back-propagation implementation. 

B.    DERIVATIVE APPROXIMATION 

Taking advantage of the observation (Section 5-B-4) that the piecewise linear approximation 
of the derivative is acceptable for the learning process, a simple circuit like that shown in Fig- 
ure 6-7 could be used to approximate the derivative function. 

^>u 
-^ 

in 

Figure 6-7.    Simple circuit to approximate derivative function. 
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The circuit works by simply detecting whether the signal voltage is within a certain range. If 
it is, then the digital output signal from this circuitry is true; but if it isn't, the output signal is 
false. 

In the back-propagation algorithm, the derivative of the activation function is used to calcu- 
late the delta signal that is to be associated with a particular node. The delta signal for a node is 
found by taking the weighted sum of the delta signals from the nodes in the next layer, and mul- 
tiplying that result by the derivative of the activation function of the node. This can be accom- 
plished by using the output of the derivative approximation circuitry to modulate the gain of the 
processor that is being used to compute the weighted sum of the deltas. 

C.    WEIGHT MODIFICATION CIRCUITRY 

The processor circuits discussed in the previous section will compute the activation and error 
signals. Additional circuitry, however, is required to calculate the weight changes from these sig- 
nals. According to the back-propagation algorithm, adjusting the weight W^ requires multiplying 
Of"1 °y of- As Figure 4-2 showed, both these signals are now available at every weight in the 
network in the form of currents. Because the product of these two analog signals will be used to 
modify a digitally encoded weight, digitization must be performed either before or after the mul- 
tiplication operation has taken place. 

Another design consideration is whether the multiplication operation should be done with 
local circuitry at each weight, with global circuitry that is used to update all the weights sequen- 
tially, or with some circuitry that is shared on a somewhat smaller scale. All the methods that 
have been considered for implementing the update operation would require a good deal of cir- 
cuitry. Replicating this circuitry at each node thus seems unreasonable, and it seems clear that 
this circuitry should be some type of global resource. This resource could be shared in a rela- 
tively simple way. The weights can be sequentially accessed and, when a weight is accessed, it 
drives current signals onto a global bus that corresponds to the 8 and O signals for that weight. 
The global circuitry could then observe those signals, calculate the weight change to be applied 
to that weight, and modify the weight appropriately. 

One possibility is to design a 4-quadrant analog multiplier that would multiply the two 
analog signals, and then a circuit which would quantize that result to a digital code that could be 
used to increment or decrement the register that controls the value of the weight. This implemen- 
tation would have the severe drawback, however, that it would be difficult to modify the algo- 
rithm to adjust the learning rate, or to include such concepts as momentum that were discussed 
in Section 3. 

In order to allow for the greatest algorithmic flexibility, the signals could be converted im- 
mediately to digital codes and then the required weight change could be calculated by a digital 
circuit (either externally, or on the same chip). The algorithm could then be adjusted by simply 
modifying the program that the digital computer is running, yet the analog network would still 
be performing computations required to calculate all the activation and ö signals. 
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7.   ALTERNATIVE DESIGN APPROACHES 

The goal of this research is to design circuitry that will implement the back-propagation 
algorithm. An original design has been presented in previous sections and, although the proposed 
design has the advantage of well-controlled performance and the use of conventional technology, 
it has the drawback that it is very area intensive and it would be difficult to imagine using this 
method to construct extremely large networks. Here, some alternative design approaches will be 
presented. 

The alternative design approaches can be separated into two classes: those that use analog 
hardware, and those that use digital hardware. The alternative analog designs discussed here store 
the weight as an analog value instead of digitally, and thus achieve great reduction in terms of 
weight area. Several approaches to storing these weight values are described and compared in 
this section. 

A purely digital design of a systolic array processor is presented in Section B below. Most of 
the alternative approaches presented here are based on ideas that have been presented in the 
literature for implementing other neural networks, and their applicability to back-propagation 
networks is discussed here. The one exception is the custom digital array processor architecture 
which is presented for the first time in this report. 

A.    ANALOG DESIGNS 

Analog Weights in Weighted Summing Circuits:— The basic principle that was used in the 
proposed designs of Section 6 involved constructing variable weight connections by adjusting the 
number of parallel uunit" weights. An alternative circuit would use only one MOS device, and 
would change the weight by changing the transconductance of this device by modifying its bias 
point [Tsividis, 87]. The basic circuit is shown in Figure 7-1 where, if the voltage stored on the 
capacitor is sufficiently greater than the Vds of the MOS device, the transistor will have a linear 

Figure 7-1.    Basic fully analog circuit. 
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characteristic. In this circuit, the MOS device operates in the linear region just as in the circuit 
described in Section 6-A-l; however, the bias of the device is now changed in order to vary the 
transconductance. 

The problem with this implementation, as with any implementation which stores analog 
values in a standard CMOS circuit, is that the charge will leak from the capacitor, and the 
analog value will drift unless it is continually refreshed. There have been at least two interesting 
methods presented in the literature for refreshing these voltages. 

One method [Brown, 87] suggests the use of a quantized refresh scheme. In this method, the 
range of allowable gate voltages is broken into a number of steps (256 steps would be equivalent 
to 8-bit quantization), and a stored voltage is refreshed by determining which sub-range the volt- 
age is in. The refresh circuitry then restores the signal to the upper limit of that particular sub- 
range. If refresh is performed frequently enough to assure that no value can drift by more than 
the span of one sub-range, then all voltages will be maintained at a quantized version of their 
original value. 

Another method that has been proposed [Kub, 88] involves maintaining a digital representa- 
tion of all the weights in the entire network in conventional memory. During a refresh cycle, the 
digital code for the desired weight value is applied to a D/A converter. The output of the D/A 
converter is used to restore the capacitor voltage to the desired level. The coarseness of the quan- 
tization in this algorithm is limited only by the number of bits of precision available in the D/A 
converter. Of course, the D/A converter is a shared resource, so the precision used does not 
affect the size of each weight. Another advantage of this strategy is that a host computer can 
always have a record of the current state of every weight in the network for the sake of perform- 
ing weight updates, or just keeping track of the value of a weight during learning. 

These proposals are for circuitry that could be constructed in a standard CMOS process. 
There have been some suggestions, however, for other analog circuit implementations that use 
slightly more exotic technologies. For example, the use of MNOS technology has been proposed 
to store the network weights [Sage, 86]. In this scheme, the weights are represented as analog 
voltages but they are stored in traps in a gate dielectric so that there is essentially no leakage, 
and thus no need for refreshing. 

B.   DIGITAL DESIGN 

Digital-Array-Processor Architecture:— Another alternative design approach would be to 
design a fully digital machine that achieved speed and efficiency through parallelism but main- 
tained the degree of precision and control that is available in a modern digital computer. An 
original architecture is proposed here to illustrate one possible way to implement such a machine. 
This design will be examined in Section 8 when the performance of the various designs is 
considered. 

Figure 7-2 shows the structure of the proposed architecture. The components are weight 
memory, a series of multiply-accumulate (MAC) processors, and a shift register. This structure 
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Figure 7-3.    Configuration for forward-propagation of activation signals. 
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could be used to calculate both the weighted sum of products of the activation signals for the 
forward-propagation and the error signals in the back-propagation. In general, multiple layers 
timeshare the hardware as calculations are done for one layer at a time, and the results of the 
calculations from one layer are used (as soon as they are available) as the inputs to the next 
layer calculations. Although the system is most efficient when the number of MACs is equal to 
the number of nodes in the widest layer, the design is modular, so that two small circuits could 
be concatenated to form a larger circuit. The architecture is most efficient when there are the 
same number of nodes in each layer. 

The basic structure will be configured slightly differently when used for the forward and 
back calculations. The main reason for this is to insure that the memory that is used to store the 
weights can be used most efficiently, as will be shown in the following description. 

When the network is being used to perform the forward calculations, it would be configured 
as in Figure 7-3. During each clock cycle, a new weight is read into each of the weight holding 
registers, and a new value is shifted into the first stage of the shift register. In this configuration, 
each MAC will calculate the weighted sum of products for a particular node (NET;). When a 
MAC has completed that calculation the result will be read, and that MAC will immediately 
begin calculating the weighted sum for the corresponding node in the next layer. Once the "pipe" 
is full, one of the MACs will produce a complete result after each clock cycle (if there are the 
same number of nodes in each layer). The result from a MAC will be passed through a processor 
that calculates the activation function, and the output from that will be both stored in a memory 
for later use in updating the weight values and fed back into the shift register as an input for the 
next layer. Although the 2 X 1 multiplexer will initially let the network inputs fill up the pipe, it 
will switch as soon as the processors start having complete results so as to use these outputs as 
the inputs to the next stage. 

When used to back-propagate the error signal, the basic architecture would be configured as 
in Figure 7-4. The biggest change is that now the network "inputs" (the error signals) are station- 
ary relative to the weight memories, and the partial results from the MACs are shifted. In this 
configuration, during any one period each MAC will calculate one more term that it will add to 
the partial sum in its accumulator, and will then pass its partial sum on to the next MAC (the 
accumulator of the first MAC will be loaded with 0). In this case, the results would be shifted 
out one at a time and the inputs would be loaded by sequential access of the storage registers. 
The reason for this change in role (between what is shifting and what is stationary) is to allow 
the weights to come from the same pages of memory and allow them to be accessed in a similar 
order, independent of whether the forward- or back-propagation is taking place. 

Of course, the goal of back-propagating the error signals is to allow for the calculations of 
the weight modifications. The weight updating could be performed concurrently with the 6 calcu- 
lations with the additional circuitry included in Figure 7-5. In this figure, the outputs that were 
calculated during the forward pass through the network are sequentially shifted through another 
shift register. During any given cycle, the output and the 8 that are at any given stage are the 
correct signals to use to update the weight which is at that same stage during that cycle. After 
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the cycle, the calculated weight adjustment is added to the weight and the modified weight value 
is written back to the weight memory. Additionally, the outputs emerge at the bottom of the 
shift register at the correct time to be used for the calculation of the derivative of the appropriate 
activation function. 

The multiplier and adder that are used for weight updating in Figure 7-5 represent only the 
simplest such architecture. Additional memory might be added to the system to facilitate the 
accumulation of weight-change information for use in variations of the back-propagation algo- 
rithm that require the accumulation of information regarding past weight changes. Alternatively, 
instead of having separate multipliers and adders in the circuit for the purpose of weight-change 
calculation, the appropriate sections of the MACs could be multiplexed between being used to 
calculate the activation/error signals, and the calculation of the weight adjustments. This design 
would save the cost of the additional multipliers and adders at the cost of complexity in the 
MACs and the controlling circuitry. 

C.   ALTERNATIVE ALGORITHM 

One common feature of all the alternative designs presented so far is that they attempt to 
implement the back-propagation algorithm. A final alternative, which does not perform the calcu- 
lations of the back-propagation algorithm but could perform a similar gradient descent, is pre- 
sented here. 

As discussed in Section 3, back-propagation implements a gradient descent of an error func- 
tion in order to learn a weight pattern. In this context, each weight is changed by an amount 
proportional to the negative of the gradient of the error function with respect to that weight. 
Back-propagation simply specifies a method of computing these gradients. The alternative, which 
was proposed by Professor John Wyatt of MIT, involves measuring (instead of calculating) this 
gradient. 

The system would require a forward network similar to that used in back-propagation, and 
the learning procedure would still involve stepping through the training vectors and defining an 
error function based upon the actual outputs of the network. The alternative algorithm would 
then involve randomly adjusting each weight, one at a time, and determining whether the adjust- 
ment increased or decreased the error function. If the weight change increased the error, then a 
weight change in the opposite direction would be performed. In this way, each weight would be 
adjusted in a direction that would tend to decrease the error function. The magnitude of the 
weight change that should be made could be determined by a number of factors including how 
dramatically the error is affected by a small change in the particular weight, or how much the 
weight can be adjusted before further adjustments no longer decrease the error function. 

This algorithm might be appropriate for analog designs. The advantage would be that the 
measurement of (9Ep/c9Wjj would, in principle, correctly account for all sources of imprecision in 
the network since the actual response of the physical network is being measured. The disadvan- 
tage is that, at least in the most straightforward implementations, the measurements required for 
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each individual weight change would be made sequentially and thus require considerable amounts 
of time. A more parallel alternative would be to sequentially perturb each neuron's NET input to 
directly measure each neuron's "6," and then in parallel perform the 2-quadrant multiplications 
necessary to update the individual weights. 
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8.    PERFORMANCE COMPARISON 

The designs that were presented in Section 7 can be classified as fully analog, fully digital, 
and a combination of the two with digital weights and analog signals. This section will attempt 
to compare and contrast these designs in terms of their relative performance and costs. This 
comparison will be complicated by the fact that, although detailed descriptions of the analog/dig- 
ital and fully digital design proposals have been presented, a fully analog approach has not been 
developed in this report (or in any other work that the author is aware of). Although this will 
limit the level of detail of the performance comparison, the basic advantages and disadvantages 
of each approach should become apparent. 

In order to form a basis of comparison, the performance and cost of each design will be 
measured in terms of several basic parameters. Cost will include "area of silicon required" which 
will be computed from the area required for one node and the area required for one weight. In 
this context, a "node" will include the fixed cost of the circuitry required to sum the activation 
signals in the forward direction and the error signals during the back-propagation phase. Sim- 
ilarly, a "weight" will include the marginal cost of the circuitry for one weight that will operate 
in both the forward and backward directions. The alternative design approaches will also be 
compared in terms of the speed with which they perform certain calculations. In addition to these 
objective metrics, some comparison also will be done in terms of more subjective, yet equally sig- 
nificant, points such as adaptability, expandability, and versatility. 

A.    PURELY ANALOG APPROACH 

Although there were several different fully analog approaches discussed in Section 7, this 
performance comparison will only be concerned with those that can be implemented in standard 
CMOS circuitry. These designs generally have in common the fact that the size of the weight is 
stored as an analog voltage on a capacitor at the gate of the weighting transistor (Kub, 88) 
(Tsividis, 87). The issue that determines the area required to implement a weight in these designs 
is that the capacitor must be sufficiently large so that it will maintain a voltage to the desired 
precision over the time interval between refreshes. The following assumptions will be made: 

Leakage Current 5 pA 

Range of Gate Voltages 2 V 

Required Precision 8 bits 

Capacitance//urn2 0.3 (F/fim2 

Refresh Period 1 ms 
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From these assumptions, the following calculations can be made: 

(1) The capacitance required to maintain the gate voltage to 8-bit precision: 

5 * 10-12 A * 1 * 10-3 s 
c™*=  cm^ = 320fF    ' (,W) 

(2) The silicon area required to implement Cmin in standard CMOS: 

320 fF 
AREAmin =  = 1067 Mm2 = 0.001 mm2        . (8-2) 

0.3 * lO"15 F/Mm2 

Thus, each weight will require a 320-fF capacitor which would require 1067 /urn2 to maintain 
the required precision for the entire refresh period. Although a weight circuit like those proposed 
for the fully analog network would only be able to implement a 2-quadrant multiplier, I will 
assume for the purpose of this analysis that an equivalent 4-quadrant circuit for the back- 
propagation of the error signal could be developed. Because the size of the weight is determined 
by the size of the capacitor used to store the weight, I will assume that a 4-quadrant circuit will 
not add significantly to the area of the weight. Additionally, because the size of the weight is to 
be the same in both the forward and reverse directions, I will assume that only one capacitor of 
this size will be needed at each weight and that, when compared with the size of this capacitor, 
the other circuitry at the node will be of insignificant area. 

It is important to note that these calculations are based on estimates of such factors as leak- 
age current and refresh cycle time. More elaborate schemes such as cooling the circuitry with liq- 
uid nitrogen or modifying the process in order to minimize leakage current might dramatically 
reduce the area required for each weight. 

The nodes in this circuit will consist of several amplifiers, and the area estimate will be 
based upon the circuit presented in (Raffel, 87) and which requires two amplifiers for the node in 
the forward network, and two amplifiers in the reverse direction. The area for this circuitry 
would be approximately 0.3 mm2. 

Determining the speed of this architecture is a bit more complicated than predicting its size. 
The speed will be determined by the amount of time required to charge and discharge the various 
parasitic capacitances in the circuit. In the most general version of this design (Figure 7-1), these 
time constants will be determined mainly by parasitic capacitances in both the interconnect and 
the active circuitry, the conductances of the weights, and the characteristics of the summing 
amplifiers. Although all these factors will be very dependent upon the specifics of the particu- 
lar analog implementation used, some general interrelationships should be implementation 
independent. 

First of all, the speed will depend upon the architecture. The parasitic capacitance will 
be affected by the "fan-in" and "fan-out" of each node because each weight circuit will add 

t 8 bits includes sign bit, so 128 steps to represent magnitude. 
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additional parasitic capacitance. Additionally, geometric considerations will require that each 
additional weight is further away, physically, from the amplifiers, and thus the interconnection 
parasitics will scale almost linearly with the size of the network. 

The speed of this design will be further determined by the operating characteristics of the 
amplifiers that are used, and the specific conductance ranges that the weights can assume. 

B. MIXED ANALOG AND DIGITAL APPROACH 

The design proposed in Section 6 involved storing the weights as digital codes, and repre- 
senting them with MDACs. The performance estimate will be based on the current mirror 
approach assuming that all weights were implemented as 8-bit values according to the circuit 
design that was proposed in Section 6-A-2-C. According to this design, the 2-quadrant weights 
used for forward-propagation require approximately 57,000 /urn2. With the addition of 4-quadrant 
weights for the back net, the total weight area would be 0.4 mm2. 

In this design, the overhead required for each node would be two amplifiers with feedback 
weights as shown in Figures 6-3 and 6-5. This circuitry would require approximately 0.15 mm2. 

As with the fully analog design, predicting the speed of this design is a difficult task. Again, 
the speed will be dependent upon the architecture used for a particular application as well as by 
the specific characteristics of the feedback amplifier. In this design, the complexity of the feed- 
back path in the current mirror circuit adds more complication because preliminary observations 
indicate that the bandwidth of the feedback amplifier may need to be limited in this design in 
order to insure the stability of the feedback arrangement. 

C. DIGITAL ARRAY PROCESSOR (PURELY DIGITAL) APPROACH 

Implementation of the basic digital architecture proposed in Section 7 requires an array of 
multiply-accumulate processors, and some storage registers. For the purposes of the performance 
analysis, it will be assumed that all numbers are 16-bit fixed point, and that the results of all 
multiplications of two 16-bit values are stored as 32-bit results. The reason for using a higher 
precision than the 8 bits for comparison to the analog/digital design with 8-bit weights is that in 
the analog/digital approach the weights are quantized but the signals are not. Simulations should 
be done in the future to determine exactly what precision is required, but, for the purposes of 
this performance evaluation, the conservative value of 16 bits will be used. 

There are basically two ways to implement the MACs: with serial arithmetic or with parallel 
arithmetic. With serial arithmetic, each cell would be approximately 3 mm2 and, if they were to 
run at 20 MHz, they would perform one 16 X 16 bit multiply in 80 ps. Although a weighted 
sum of products involves 50 such operations, it would only take 100 j*s for each sum due to the 
parallel nature of the architecture. A forward and backward cycle through the network would 
consist of about 250 such calculations, and would thus require about 25 ms. 
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If the MACs were to be implemented in parallel hardware, then they would be larger (about 
7 mm2) but faster — capable of performing each weighted sum of products in approximately 30 jxs. 
A forward and backward cycle through the network would thus involve approximately 250 of 
these operations and would thus take about 7.5 ms. 

Like the analog and analog/digital implementations, the required computation time in the 
fully digital architecture is affected by the "fan-in" and "fan-out" of the nodes. Unlike those 
designs, however, the speed of the digital design would scale linearly with the size of the network, 
while the speed of the other designs would tend to be more severely affected by network size as 
discussed above. 

Unlike the analog and analog/digital implementations, in the fully digital implementation the 
weights require very little area because they can be stored as digital numbers in high-density 
RAM. If the weights were to be stored as 8-bit numbers, then the area required would be ap- 
proximately 300 ^im2 for each weight. 

D.    SUMMARY 

1.    Area Efficiency 

The different design approaches can be characterized by the amount of area required. In a 
network that has n nodes in each layer, there are n2 weights in each layer, so it should be clear 
that the area consumed by the weight circuitry is more critical than the area that is consumed by 
the node circuitry. Table 8-1 compares the size of weights and nodes that would result from the 
various design approaches. As the table shows, the weight circuitry associated with the combined 
analog/digital approach is considerably larger than the area associated with the weight circuitry 
in either of the other approaches. 

TABLE 8-1 

Summary of Cell Area Requirements 

Design Approach 
Size 

Node (mm2) Weight (mm2) | 

Mixed Analog and Digital 0.15 0.4 

Purely Analog 0.3 1 MO"3 

I Digital Array Processor 
(serial arithmetic) 

3.0 3*10"4 

I Digital Array Processor 
(parallel arithmetic) 

7.0 3*10-4 
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Table 8-2 compares the different implementation strategies in terms of the size of the net- 
work that could be implemented on a 1 X 1 cm die assuming that there were the same number 
of nodes in each layer. 

TABLE 8-2 

Maximum Network Size in Nodes/Layer 
(1 X 1 cm Die) 

Design 
Approach 

Number of Layers 

1 2 3 4 

Analog/Digital 14 10 8 7 

Analog 175 100 70 50 

Digital* 30 30 30 30 

* Serial arithmetic 

2. Ability to Initialize 

A significant drawback of the fully analog approach is the difficulty in initializing the 
weights in a network to some predetermined values, because the voltages stored on the capacitors 
are not related in any simple way to the value of the absolute value of the weight that they 
represent. Although the weights could be initialized to a specific voltage, the mapping from the 
stored voltage to the weight size is not simple. In both the fully digital and half-digital/half- 
analog approaches, the weights are represented as digital numbers and these numbers map 
directly to the weight size. Although this is not catastrophic when the weights are to be initialized 
randomly and learned by the network, this would prevent the network from being used for only 
the processing phase of the algorithm (not the learning phase) and would also make it difficult to 
evaluate the effects of different nonrandom initialization patterns. 

3. Versatility 

The fully digital approach has many advantages in this regard. In the digital architecture, 
speed can be traded off against size. Although the architecture works most efficiently when there 
are as many MACs as there are nodes in the largest layer, this architecture could easily be modi- 
fied so that any size architecture could implement even the largest of networks. The trade-off 
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would be that the network would no longer be able to operate at maximum efficiency and would 
perform more and more slowly on larger and larger networks. Nonetheless, unlike the analog 
architectures in which the size of the hardware limits the size of networks that can be imple- 
mented, there is no such limitation with the fully digital approach. Additionally, chips containing 
small digital networks could be cascaded to form larger networks; this would be much more dif- 
ficult, if not impossible, to accomplish with the analog/digital or fully analog approaches. 

E.    CONCLUSIONS 

Three designs have been explored in this report and, although they all have their advantages, 
the digital design seems to be the most promising. The digital design has the advantages of being 
more versatile and provides ways to cascade smaller nets to construct larger ones. Although the 
fully analog approach is more area efficient for very small networks, the digital approach would 
be very comparable if not smaller for networks that have a large number of weights. While the 
analog/digital approach makes it easier to store the weight values than the fully analog approach, 
the weight size is simply too large to make it viable for large networks. 
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9.    CONCLUSIONS AND FUTURE WORK 

This research has concentrated on defining the significant issues involved in implementing 
the back-propagation algorithm in hardware, and designing the required circuitry. This work has 
led to the determination of the sensitivity of the algorithm to various implementation artifacts, 
and to some insight into the advantages of the different possible design approaches. 

The simulations revealed that weight quantization affects learning and operation differently. 
Furthermore, it was determined that in both learning and representation, range was as important 
as the word length used to represent the weights. Specifically, it was determined that in a system 
that used the logistic activation function which is described in Figure 3-2, the resolution required 
for representing a problem is a minimum step size of 0.5 which translates into 6 bits for the 
problems that were examined. For learning, a minimum step size of about 0.1 was required. In 
the experiments, this translated into 8-bit word lengths. 

To meet the goal of a design that performed analog computations, a design which used 
analog signals and digital weights was proposed. This design was then contrasted with a fully 
analog approach where it was shown that the fully analog approach was much more area- 
efficient but was not capable of being accurately initialized. Although the fully analog approach 
has the additional complication of storing analog voltages, several schemes for accomplishing this 
were reviewed. 

A digital architecture to perform the back-propagation algorithm was also proposed, and 
this was contrasted with the other two design approaches. It was found that this approach 
offered many advantages including reliability, expandability, adaptability, and the ability to use 
small architectures to emulate larger networks by simply trading off speed for size. Furthermore, 
while the digital design would require more area for smaller networks, on networks with a large 
number of connections the area required by the digital design would quickly become comparable 
to that required by the fully analog design. 

The most promising direction for future effort is in the detailed design of a fully digital 
array processor architecture. Although questions remain regarding the number of bits required in 
this implementation as well as the details of a design that could be readily cascaded and 
expanded, this design approach seems to offer the most potential. 
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APPENDIX A 
SIMULATION DETAILS 

1.    THE PROBLEMS 

The training data for the simulated problems was found by defining the region boundaries 
and then selecting data points within each region from a uniform random distribution over that 
region. Each problem had an equal number of points chosen from each class region, and the 
points were presented during training interspersed by region (one point from region A, one point 
from region B, etc.). There were a total of 500 training vectors for the "circle" and "corner" 
problems (250 from class A and 250 from class B), and there were 1000 training vectors for the 
10-dimensional problem (100 from each class). 

The class region boundaries for the 10-dimensional problems were hyperspheres. All the cen- 
ters of the hyperspheres were equidistant (0.57 input-space-units from each other) and the spheres 
have a radius of 0.275 input-space-units. Thus, all spheres are 0.02 input-space-units from each 
other at the nearest point. Figure 5-2 shows graphically what a 2-dimensional equivalent of this 
10-dimensional problem would be. 

2.    THE SIMULATIONS 

All weights were adjusted after application of each vector according to the modified learning 
algorithm presented in Section 3. The proportionality constant rj which determined what fraction 
of the calculated weight change was actually applied to the weight, and the "momentum" a were 
generally set to 0.3, but their values were varied between 0.2 and 1.0 in simulations where accept- 
able performance was not achieved with the values of 0.3. The effect of changing each of these 
two constants was very different. 

When 77 was too small, no weight adjustments would take place because all calculated 
changes were smaller than the resolution of the weights. When rj was too large, the network 
weights would change after each vector was applied and the error would never get very small. 
When a was too small, the weights would also change considerably without minimizing the error; 
but, when a was too large, the network would cyclically reduce and increase the error function. 
First, the network would begin reducing the error function as the network moved toward a solu- 
tion. When the error was getting small, however, the weights would continue to change and the 
error function would begin to increase again. 

Because the sigmoid function that was used (see Figure 3-2) never reaches 0 or 1, in the sim- 
ulations, when the output of the network was within 0.1 of the desired output, then the error sig- 
nal was set to 0 for that output. This was done to prevent the network from attempting to 
increase weights without limit in an attempt to drive the network outputs all the way to 0 or 1 
(something that could only be accomplished with infinite weights because these are asymptotes of 
the activation function). 
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Figure A-l.    Typical weight pattern for circle problem. 
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3.    WEIGHT PATTERNS 

In an attempt to be more specific about the weight patterns that were learned, Figures A-l 
and A-2 show one set of weight patterns that were learned with high-precision weights for the 
circle and corner problems in a network that had two layers and eight hidden nodes. The perfor- 
mance results from these simulations were shown in Tables 5-l(a) and (b). 

Careful examination of these weight patterns which were found in the trained network 
reveals a great deal of similarity between the layer-1 weights for the circle and corner problems. 
Figures A-3 through A-6 provide some insight into the reasons for this similarity. The figures 
consist of straight lines with normal bisecting segments, and curved contours. Each of these fig- 
ures indicates the response of a single output node in a network to data in the domain space of 
the network. 

To interpret these figures, understand that the straight lines represent the dividing lines that 
pass through the domain space of the problems as introduced by the first-layer nodes and 
(indexed by the number of the first layer node that defines the line).t Additionally, attached to 
each dividing line is a perpendicular segment which indicates how the particular second-layer 
node being represented by the figure is affected by the first-layer node corresponding to that di- 
viding line. The length of the perpendicular segment indicates how strongly the node is influenced 
by that dividing line, and the direction of the segment indicates on which side of the dividing line 
the node is positively affected. 

Each figure also contains contours which indicate the decision regions that were formed by 
the network. In the case of the circle problem, the decision region is a free-form closed contour 
that closely resembles the predefined circular class boundary. For the corner problem, the deci- 
sion regions form in the four corners of the domain space. The boundary lines indicate the 
points in space where the network's two outputs are equal. On one side of these lines, output 1 is 
largest; on the other side, output 0 is largest. 

Figures A-3 and A-4 illustrate how nodes 0 and 1, respectively, respond to data points in the 
input space in the "circle" problem, while Figures A-5 and A-6 indicate this same information for 
nodes 0 and 1 in the "corners*' problem. The first interesting observation based upon these fig- 
ures is that, although the second-layer weights are very different for the two problems, the first 
layer weights (as represented by the dividing lines) are similar. This is a result of the fact that 
both of the weight patterns were learned from the same initial nonrandom weight distribution as 
described in Section 5-B-5. During learning, several of the first-layer nodes that could separate 
the two data classes adjusted their position in input space. Because the data in the corner and 
circle problems have a similar symmetry, the same dividing lines were selected. 

t Although there are eight nodes in the first layer, the dividing lines not shown do not pass 
through the domain space. 
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It should also become clear from Figures A-3 through A-6 that the solutions represented by 
these weight patterns are not globally optimum. In the case of the circle problem, a better defini- 
tion of the circular boundary would result if all eight dividing lines introduced by the first-layer 
nodes were arranged to form an octagon about the center of the space. In the case of the corner 
problem, the four dividing lines that pass through the domain space are in what seem to be ideal 
positions, but the other dividing lines are not contributing to the solution. A more optimum use 
of the network would be achieved in this case if all eight of the dividing lines passed through the 
domain space (perhaps several dividing lines could have the same orientation). 

These observations lead to the following suggestion for future investigation. After a certain 
amount of learning has taken place, the input weights to first-layer nodes that are not contribut- 
ing to the solution might be reinitialized. This could be done by examining all the weights that 
leave a particular first-layer node. If they are all below a certain threshold level, then the node is 
not contributing significantly to the solution, and its input weights should be reinitialized. 
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